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Abstract
We describe the implementation of the prime path
coverage support introduced the GNU Compiler Col-
lection 15, a structural coverage metric that focuses
on paths of execution through the program. Prime
path coverage strikes a good balance between the num-
ber of tests and coverage, and requires that loops are
taken, taken more than once, and skipped. We show
that prime path coverage subsumes modified condi-
tion/decision coverage (MC/DC). We improve on the
current state-of-the-art algorithms for enumerating
prime paths by using a suffix tree for efficient pruning
of duplicated and redundant subpaths, reducing it
to O(n2m) from O(n2m2), where n is the length of
the longest path and m is the number of candidate
paths. We can efficiently track candidate paths using
a few bitwise operations based on a compact represen-
tation of the indices of the ordered prime paths. By
analyzing the control flow graph, GCC can observe
and instrument paths in a language-agnostic manner,
and accurately report what code must be run in what
order to achieve coverage.

1 Introduction
A major limitation in functional testing and dynamic
software analysis is the path coverage problem [1, 17,
9], i.e. problems can only be detected in executed
paths. Fuzzing [29] has proven to be an effective tech-
nique for exploring paths and detecting bugs, and
there are algorithms [18] that try to generate mini-
mal inputs for coverage. There have been proposed
hardware extensions for dynamically expanding into

untested paths [20], and automatic high coverage test
generation [6]. Structural coverage analysis on its
own remains a useful tool as it provides increased
visibility into the code exercised when testing [14],
an objective exit-criterion [7] for manual testing and
test writing, and is powerful for checking assumptions.
Ball and Larus [3] presented efficient path profiling
on SPARC systems in the 1990s, but the industry
has never widely adopted path coverage. They note
that the cost of path profiling can be comparable to
block- and edge profiling while providing far more
information, and can form a basis for profile-guided
optimizations. In this paper we describe our imple-
mentation of the prime path coverage support in the
GNU Compiler Collection version 15.

While Li, Praphamontripong, and Offutt [19] found
the cost/benefit of prime path coverage worse than
edge-pair and definition-use, it is worth noting that
prime path coverage still found more defects than the
other coverage criterion used in the study. Durelli et
al. [8] also found prime path coverage more effective at
finding defects than edge-pair coverage at a moderate
increase in test cases. Prime path coverage almost
subsumes edge-pair coverage [1, 21]; self-edges require
test paths with repeated vertices which are not simple.
Since prime paths almost subsume edge-pairs it is
reasonable that it is sensitive to the same problems,
which seems supported by Li et al. [19]. Stronger
coverage criteria have worse cost/benefit ratio in terms
of number-of-bugs, but are more suited to detect
deeper defects.

John Regehr [23] demonstrates a bug in Figure 1
that branch coverage, and even edge-pair coverage,
will not detect, which he names path sensitive condi-
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int silly (int a) {
int *p = &x;
if (a > 10) p = NULL;
if (a < 20) return *p;
return 0;

}

Figure 1: Assume x is a global int. Testing with 5
and 25 satisfies branch coverage, but does not trigger
the bug (dereferencing *p when p is NULL). Prime
path coverage would require both decisions to be true.
The example is from Regehr [23].

tionals. These subtle interactions between condition-
als is not uncommon in real-world programs. Regehr
also notes that due to the path explosion problem [4]
it is infeasible to achieve 100% path coverage. Even
full path coverage is not, in itself, sufficient to find all
bugs in real programs [22].

Even considering all of the limitations noted above,
prime path coverage remains a powerful tool for soft-
ware testing; it is a strong criterion that is simple to
describe and understand, while simultaneously sub-
suming statement, branch, definition-use, and mostly
edge-pair coverage [21, 1], which allows testing and
development to focus on a single criterion. Path cov-
erage, even limited forms such as simple path- and
prime path coverage, is also able to observe data de-
pendent infeasible paths, i.e. paths that cannot be
taken due to contradictions or dependent values, de-
fensive guards, and similar constructs. This makes
path coverage a useful measurement even when not
aiming for full coverage. While the main objective
of testing should be to verify that the program com-
plies with the functional requirements, prime path
provides strong evidence that the program meets the
requirements and that the requirements are complete.

2 Background
The tooling and algorithms in this space tend to work
on a finite state machine (FSM) or graph represen-
tation of the programs [21, 1]. A control flow graph
(CFG) is a graph representation of computation and

control flow for a program module, e.g. a function in C.
In the CFG, the vertices, or basic blocks, represent un-
interruptible streams of computation while the edges
characterize the control flow between the basic blocks.
The CFG is the connected and possibly cyclic directed
graph G = (V,E, v0, vx) where V is a non-empty fi-
nite set of vertices, E ⊆ { (u, v) | u ∈ V, v ∈ V }, and
v0, ve are the entry and exit vertices so that for all ver-
tices v ∈ V there is a path (v0, . . . , v) and (v, . . . , ve).
The entry- and exit vertices do no represent any com-
putation, v0 has no incoming edges, and ve has no
outgoing edges.

A simple path is a sequences of vertices (v1, . . . , vk)
where all vertices are distinct. A simple cycle is a
sequence of vertices (v1, . . . , vk) where v1 = vk and
all other vertices are distinct. Let P be simple paths,
C simple cycles, and R = P ∪ C; prime paths are
the maximal objects of R. A prime path is covered
if its vertices were visited in sequence during testing.
Figure 2 shows the simple- and prime paths for a
small function with no cycles. Counting simple paths
is known to be #P-complete [27], so enumerating
them is at least as hard, and finding prime paths from
the set of simple paths quickly becomes impractical.
Note that while there are fewer prime paths than
simple paths, even small graphs may have a large
number of prime paths [15]. Prime path coverage
strikes a good balance between defect sensitivity and
the number of required test paths. Notably, prime
path coverage require loops to be taken, taken more
than once, and skipped [1].

A coverage criterion C1 subsumes C2 if satisfying
C1 also guarantees satisfying C2 [1]. For example,
vertex coverage, or node coverage, is the criterion
that each vertex in the CFG shall be visited at least
once, and edge coverage is the criterion that each
edge shall be taken at least once. Edge coverage
subsumes vertex coverage because taking every edge
in a connected graph guarantees visiting every vertex
at least once. Prime path coverage subsumes most
commonly used coverage metrics; statement, branch,
condition, decision, node, edge, and definition-use [21,
8].
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Simple paths [1 2] [1 2 3] [1 2 3 5]
[1 2 3 5 6] [1 2 3 5 6 8] [1 2 3 5 7]
[1 2 3 5 7 8] [1 2 4] [1 2 4 5]
[1 2 4 5 6] [1 2 4 5 6 8] [1 2 4 5 7]
[1 2 4 5 7 8] [2 3] [2 3 5] [2 3 5 6]
[2 3 5 6 8] [2 3 5 7] [2 3 5 7 8] [2 4]
[2 4 5] [2 4 5 6] [2 4 5 6 8] [2 4 5 7]
[2 4 5 7 8] [3 5] [3 5 6] [3 5 6 8]
[3 5 7] [3 5 7 8] [4 5] [4 5 6]
[4 5 6 8] [4 5 7] [4 5 7 8] [5 6]
[5 6 8] [5 7] [5 7 8] [6 8] [7 8]

Prime paths [1 2 3 5 6 8]
[1 2 3 5 7 8] [1 2 4 5 6 8]
[1 2 4 5 7 8]

Figure 2: The 41 simple paths and 4 prime paths for
the CFG for two sequential decisions. Executing the
prime paths would cover all simple paths.

3 Prime path coverage sub-
sumes MC/DC

The unique property of MC/DC is the independence
criterion [14], which states that each condition must
be shown to take on both true and false while indepen-
dently affecting the decision’s outcome. A condition
can independently affect the outcome if changing it
while keeping the other conditions fixed also changes
the outcome. Because the independence is shown
from the combination of inputs, vertex coverage of a
Boolean expression is not enough to satisfy MC/DC. A
vertex can be visited and still not contribute towards
MC/DC, and it is not obvious that it is subsumed by
prime path coverage.

Proposition. Every test vector required for MC/DC
is tested with prime path coverage.

Observation. Every simple path is a subpath of a
prime path.

Proof. Any Boolean function has a canonical represen-
tation as a reduced ordered boolean decision diagram
(BDD) [5], which is a rooted acyclic graph. Each com-
bination of inputs map to a path in the BDD, which
and MC/DC is achieved by taking a subset of the
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5 6

(a) CFG
P1 1 2 3 4 5
P2 1 2 3 4 6
P3 1 2 3 5
P4 1 2 4 5
P5 1 2 4 6
P6 1 5

(b) Prime paths

1 2 3 4 Path
1 0 0 0 0 P5

2 0 0 0 1 P4

3 0 0 1 0 P5

4 0 0 1 1 P4

5 0 1 0 0 P2

6 0 1 0 1 P1

7 0 1 1 0 P3

8 0 1 1 1 P3

9 1 0 0 0 P6

10 1 0 0 1 P6

11 1 0 1 0 P6

12 1 0 1 1 P6

13 1 1 0 0 P6

14 1 1 0 1 P6

15 1 1 1 0 P6

16 1 1 1 1 P6

(c) Truth table

Figure 3: BDD for the Boolean expression a or (b
and c) or d. The double circle vertices 5 and 6 are
the true and false outcome, respectively. Rows 1, 2, 5,
7, 9 (paths P5, P4, P2, P3, P6) would achieve MC/DC,
but row 6 (path P1) would have to be included for
prime path coverage.

paths in the BDD. The BDD is acyclic so all paths are
simple, and since prime path coverage requires taking
all maximal simple paths it subsumes MC/DC.

Which subset of paths MC/DC requires depends
on the kind of MC/DC. For unique-cause MC/DC
it is a subset where between pairs of inputs the final
vertex changes when a only a single input condition
differs. For masking MC/DC it is a set of paths
that would visit all vertices while visits are filtered
with a masking function [16]. The inverse is not true;
MC/DC for a Boolean expression does not imply
prime path coverage for the BDD, as shown in the
counter example in Figure 3.
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4 Enumerating prime paths
In this section we describe the algorithm in GCC that
enumerates the prime paths. An efficient algorithm
is important as the number of paths grows very fast
with program complexity; for example, a sequence of
n if-then-else with no nesting, as in Figure 2, has 2n

prime paths as every subsequent if-then-else would
add another two prime paths to each of the 2n−1

prime paths up to it, and the relatively short function
in Section 4 has 17 prime paths.

We build on two algorithms for prime path enumer-
ation, described by Ammann and Offutt, and Fazli
and Afsharchi. The algorithm by Ammann and Of-
futt [1] finds the maximal simple paths and simple
cycles by starting with all single-vertex candidate
paths and progressively extending each path with suc-
cessors while maintaining the simple path- and cycle
properties, When no more paths can be extended,
the set of paths is pruned by removing all paths that
also appear as subpaths, leaving only the paths that
satisfy the prime criterion. Fazli and Afsharchi’s
compositional method [11] improve on this for many
real-world programs. The high level steps of their
algorithm are to (1) compute the component graph
of the CFG; (2) generate the prime paths for each
component and the component graph; (3) extract dif-
ferent intermediate paths from the components, and
(4) merge intermediate paths to form the prime paths
of the CFG. Fazli and Ebnenasir [12] propose a way
to use the GPU to accelerate this design.

The effectiveness of the compositional method de-
pends on the structure of the CFG, as it relies on
building on the intermediate solutions from solving
the smaller subgraphs inside the strongly connected
components (SCC). This is ineffective when the com-
ponent graph and the CFG are isomorphic, as in
Figure 2, or when most of the CFG is within a single
component, as in Figure 5. The former happens when
there are no loops, and the latter when most of the
function is inside a loop. In both cases GCC essen-
tially falls back to the algorithm given by Ammann
and Offutt.

Both algorithms need to filter non-prime paths,
which can be done efficiently with a variant of gen-
eralized suffix trees [28, 10, 26, 13] over an integer

int search (int a[], int len, int key) {
int low = 0;
int high = len - 1; 1
while (low <= high) { 2

int mid = (low + high) / 2;
if (a[mid] < key) 3

low = mid + 1; 5
else if (a[mid] > key) 6

high = mid - 1; 7
else

return mid;
} 8
return -1; 4

} 9
(a) Code with the basic blocks annotated on the right

1

2

3 4

5 6

7 8

9

(b) CFG

1 2 3 5 3 6 7 2 4 9
1 2 3 6 7 5 2 3 5
1 2 3 6 8 9 5 2 3 6 7
1 2 4 9 5 2 3 6 8 9
2 3 5 2 6 7 2 3 5
2 3 6 7 2 6 7 2 3 6
3 5 2 3 7 2 3 6 7
3 5 2 4 9 7 2 3 6 8 9
3 6 7 2 3

(c) Prime paths

Figure 4: A binary search with its control flow graph
and 17 prime paths, showing that even short and
relatively simple functions can have many prime paths.
Note that block 9 is the action of the return, the
transfer of control back to the caller.

4



1

2

3

4

5 6

78

9

SCC

Figure 5: Most of the CFG is inside a single compo-
nent.

alphabet of the vertex IDs. A generalized suffix tree
is a suffix tree for a set of strings and can be con-
structed as a suffix tree of the concatenated strings
and a special end-of-string character. Since prime
paths are maximal simple paths or simple cycles they
correspond to the strings in the suffix tree that do not
prefix-match any suffix in the tree. Most traditional
implementations of suffix trees store offsets into a
string, but the prime paths are generated from the
CFG and there is no explicit string. It is trivial to
construct a string from candidate paths by concate-
nation. Alternatively, the tree can store substrings
directly and not depend on an explicit string. This is
how we implemented the suffix tree in GCC.

Figure 6 shows the suffix tree for a simple pro-
gram and demonstrates the most important prop-
erties: path insertion, subpath detection, and path
reconstruction. A path p is inserted by following the
path from the root until either p is exhausted or the
current vertex is a leaf, in which case the final mark
on the leaf is cleared, the path is extended with the
remaining vertices of p, and the new leaf is marked
final. The height of the suffix tree is determined by
the longest prime path and grows with the length of
the paths, not with the number of paths. A suffix
p′ = tail p is created and inserted, with the difference
that the final vertex of p′ is not marked final. This is

repeated until p′ is empty, or until p′ fails to create a
new vertex, as it means the remaining suffixes have
already been inserted. Subpath detection is simple
insertion; if a path is extended it is not prime and
the final mark is removed, and if a superpath already
existed p will be exhausted before reaching a leaf. For
example, in Figure 6, inserting the path [1 4 2] would
not reach the leaf 4, and inserting the path [1 2 5 6]
would extend [1 2 5] and clear the final mark. Note
that not all leafs are final; [3 4 5] is a suffix of [2 3 4 5]
and not prime. Finally, there is path reconstruction;
prime paths are the paths that end in a final vertex,
and since the tree is ordered the paths can be enu-
merated in lexicographical order with a depth-first
traversal of the tree.

Inserting a path P in the suffix tree is done by
inserting the suffixes P [1..n], P [2..n], . . . , P [n] where
n = |P |. Given m prime path candidates we need
find the suffix tree, and by extension set of prime
paths and eliminate redundant subpaths, in O(n2m).
This is an improvement on the pruning step of the
algorithm by Fazli et al [11, 12], which filters using
a nested loop over the set of candidates in O(n2m2).
Note that paths tend to be short and n small; but the
number of candidates m grows very fast.

The path explosion problems makes it a practical
necessity to limit analysis on programs that are too
complex, i.e. programs with too many paths. The cost
of enumerating the prime paths and emitting instruc-
tions grows with the number of prime paths, as well as
the compiled object size. While there are techniques
for estimating the number of s − t paths [24] that
could be used for estimating the prime path count,
we employ a simple pessimistic heuristic; we maintain
a running count of the number of paths and abort
whenever it exceeds the given threshold. The heuristic
is pessimistic as it counts inserts into the suffix tree
without applying corrections for when paths are later
subsumed. This is a pragmatic and fast solution that
slightly over-counts paths and adds very little over-
head, only an increment and a limits check, but might
stop analysis on programs where the total path count
is just under the threshold. The threshold default is
quite high, 250000, and can be set by the user with
a flag. This is deemed an acceptable solution to the
path explosion problem given the remote likelihood
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1

4

2

3

5

(a) CFG

1 4 2 3
1 4 5
2 3 4 2
2 3 4 5
3 4 2 3
4 2 3 4

(b) Prime paths

1 2 3 4 5

4 3 4 2 5

2 5 4 2 5 3

3 2 5 3 4

(c) Suffix tree

Figure 6: A CFG, its prime paths, and the suffix tree
after all simple paths have been inserted. Every path
from the root to a final (double) vertex is a prime
path, and the ordered set of prime paths can be found
by an ordered depth-first traversal of the tree left to
right. Testing for any subpath is done with insertion:
if no new vertices are created, the path is a subpath.

of any tester wanting to write that many test cases.
As with any complexity problem, the better solution
may be to refactor the program.

5 Instrumentation
It is necessary to keep track of both completed paths
and partially taken paths. This can be done efficiently
using only a few bitwise operations, similar to how
GCC measures MC/DC [16]. The prime paths can be
ordered lexicographically and a numerical identifier is
assigned to each prime path based on its index in the
ordered set. For each function, we add the persistent
set P , which will be initialized with an empty set the
first time the program is run in an auxiliary file called
the counts or .gcda file. When the program is run it
will, in the function prelude, initialize the function-
local function set L. Each CFG vertex v is extended
with three steps: recording/flushing, discarding, and
initializing, in the order listed below.

Recording is updating the persistent counters P in
the .gcda file with some of the paths in L. There
may be more than one path which ends in the
vertex v, and there may be paths that go through
v which should not be recorded. R(v) is the set
of paths that end, and should be recorded, in v.

Discarding is removing the diverged-from paths
from the candidate set L when taking an edge.
D(v) is the set of paths that should be discarded
in v.

Initializing is starting the tracking of paths that be-
gin in v by adding them to the current candidate
set L. I(v) is the set of paths that start, and
should be initialized, in v.

These steps are set operations executed immediately
upon entering the vertex v. Recording is P ←
P + (L ∩ R(v)), discarding is L ← L − D(v), and
initializing is L ← L + I(v). For example, for the
function gnu_getcwd in Figure 8, the vertex 3 will be
transformed as in Figure 7. Note that for loops the
recording and initialization will happen in the same
vertex. This is fine; since L is initialized to the empty
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P.add(intersection(R(3), L))
L.remove(D(3))
L.add(I(3))
val = getcwd (buffer, size)
if (val != 0)

Figure 7: Basic block 3 from Figure 8 and Figure 9a
with prime path recording and tracking as functions
on sets.

set, L ∩R(v) will be empty on the first visit of v and
adding it to P becomes a no-op.

The paths and vertices in these examples are taken
from Figure 8, and the full table of R(v), D(v) and
I(v) is shown in Figure 9c. Prime paths are recorded
when entering the last vertex, e.g. R(7) = {P1, P5 },
so P1 and P5 are recorded when entering vertex 7.
Prime paths are discarded when they contain the
predecessor p but not the vertex v. For example,
D(4) = {P1, P5 } as there is an edge (3, 4) and the
vertex 4 is not in P1 and has no predecessor in P5.
Finally, paths are initialized when entering the first
vertex, so I(4) = {P5, P6 }. These examples demon-
strate why the order listed above is important for these
operations. If discarding happened before recording,
P5 would never be covered as it is both discarded and
recorded in 4. Similarly, if initialization happened
before discarding then P5 would be initialized in 4
before being immediately discarded.

With the set of prime paths enumerated, the func-
tions over sets can be efficiently implemented with
bitwise operations as follows; let B be the bitset rep-
resentation of the set P where the the nth bit B(n)
corresponds to the path Pn, and BR(v), BD(v), BI(v)
maps to R(v), D(v), I(v) respectively. We have that
BR(n) = 1 if Pn ∈ R(n), BD(n) = 1 if Pn ∈ D(n),
and BI(n) = 1 if Pn ∈ I(n). All other bits are set to
0. A complete table of the bitset representations of
the functions in Figure 9c is shown in Figure 10. BL

and BP are both initialized to all zeros. Note that
for the bitwise operations it is practical to invert BD

so applying it as a bitmask preserves non-discarded
paths.

We can translate the set functions to work on

void *gnu_getcwd () {
int size = 100;
void *buffer = alloc (size); 1
while (1) { 8

void *val = getcwd (buffer, size); 2
if (val != 0) 3

return buffer; 5
size *= 2;
release (buffer); 4
buffer = alloc (size); 6

} 8
} 7

Figure 8: gnu_getcwd from unix-tree 2.0.4 [2] with
the basic blocks annotated on the right.

1

2

3

45

67

8

(a) CFG

P1 1 2 3 5 7
P2 1 2 3 4 6 8
P3 2 3 4 6 8 2
P4 3 4 6 8 2 3
P5 4 6 8 2 3 5 7
P6 4 6 8 2 3 4
P7 6 8 2 3 4 6
P8 8 2 3 4 6 8

(b) Prime paths
1 2 3 4 5 6 7 8

P1 I D R
P2 I D R
P3 RI D
P4 RI D
P5 DI R
P6 RI D
P7 D RI
P8 D RI

(c)

Figure 9: Instrumenting gnu_getcwd (Figure 8). The
table in Figure 9c shows which paths are recorded
(R), discarded (D), and initialized (I) when the vertex
is visited.
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v BR(v) BD(I) BI(v)
1 00000000 00000000 00000011
2 00000100 00000000 00000100
3 00001000 00000000 00001000
4 00100000 00010001 00110000
5 00000000 11101110 00000000
6 01000000 00000000 01000000
7 00010001 00000000 00000000
8 10000010 00000000 10000000

Figure 10: Bitset representation of Figure 9c

bitsets, so that for each vertex v; (1) record
P ← P + (L ∩R(v)) becomes P = P | (L & R[v]);
(2) discard L← L−D(v) becomes L = L & ~D[v],
and (3) initialize L ← L + I(v) becomes
L = L | I[v]. Full coverage is achieved when all
bits in P are set.

To reduce the runtime and size overhead of instru-
mentation, certain unnecessary operations are elim-
inated. For example, if no paths are discarded in v
then BD(v) = ∅, which means L = L − BD(v) will
have no effect and we do not need to emit instructions
for updating L. The same techniques apply to the
recording and initializing steps. It can be seen from
the sparseness of the table in Figure 9c that many
operations can be elided in practice; instructions have
to be emitted if R(v), D(v), or I(v) is non-empty, but
only the instruction corresponding to that step. For
example, the vertex 4 will be extended with all the
steps, 2 would only need record and discard, and 5
only needs a single discard instruction to discard mul-
tiple prime paths A complete example of gnu_getcwd
with instrumentation as if it was written in C is shown
in Figure 11.

The number of prime paths of a function is usually
much larger than the native word size or instruction
operand sizes. In GCC 14, released in 2024, the size of
the gcov data type used in the .gcda file is 32 or 64 bits,
depending on the target architecture. The bitset of n
bits can be partitioned into k = d nw e bins of w bits,
where w is the number of bits in the gcov type. It is
not necessary to emit instructions to update bins that
are not affected. For example, for the gnu_getcwd in
Figure 10 assuming w = 4 would split all bitsets in two.

To perform the initialization L = L | I[1] where
I[1] = [0000, 0100] it is sufficient to only apply
the bitwise-or to the lower half. This optimization can
greatly reduce the size of the compiled object files and
improve runtime performance; in the the tree.c file
in unix-tree 2.0.4 [2], each vertex typically interacted
with up to 10% of the paths.

6 Reporting coverage
The coverage report is printed by the gcov program,
which produces a report from the auxiliary notes and
counts files [25]. The notes file, with the extension
.gcno, is created by GCC when the program is com-
piled, and the counts file, with the extension .gcda, is
created and updated by the instrumented program.
The notes file stores information about the CFG, func-
tion names, line information, etc., and the counts file
store the counters and coverage measurements. The
prime paths are not stored explicitly in the notes file
as it would be very large, but recomputed from the
recorded CFG. If computing the prime paths for a
function was aborted due to exceeding the path count
threshold it is marked as such and gcov will not at-
tempt to recompute the prime paths for that function.
By using this information gcov can accurately report
on prime path coverage and describe precisely how to
cover the uncovered prime paths. Figure 12 shows an
excerpt of a report on the gnu_getcwd function. This
is the path P2 = [1 2 3 4 6 8] in Figure 9b, and gcov
prints the lines of source source, and the basic block
associated with it, in the order they must be executed
to cover the prime path. GCC also offers a condensed
line-oriented format intended for machine processing.

7 Conclusion and future work
This paper describes the implementation by the au-
thor of the prime path coverage support in GCC. We
improve on the algorithms in this space by utilizing a
suffix tree, which ensures fast removal of subsumed
paths as well as providing a compact representation
of the prime paths of a graph. The instrumented
program is reasonably efficient; it only needs 1 bit per
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extern uint P;
void *gnu_getcwd () {

uint L = 0;
L |= 00000011;
int size = 100;
void *buffer = alloc (size); 1
while (1) { 8

P |= L & 00000100;
L |= 00000100;
void *val = getcwd (buffer, size); 2
P |= L & 00001000;
L |= 0001000;
if (val != 0) 3

L &= ~11101110;
goto _return; 5

P |= L & 00100000;
L &= ~00010001;
L |= 00110000;
size *= 2;
release (buffer); 4
P |= L & 01000000;
L |= 01000000;
buffer = alloc (size); 6
P |= L & 10000010;
L |= 10000100;

} 8
_return:

P |= L & 00010001;
return buffer;

} 7

Figure 11: gnu_getcwd with instrumentation as-if
it was written in C. P is the persistent bitset, and
the constant bitmasks are taken from the table in
Figure 10. The label on each block is the is the CFG
vertex ID as shown in Figure 8 and Figure 9a.

path 1 not covered:
BB 2: 5:void *getcwd (void *, int)
BB 2: 7: int size = 100;
BB 2: 8: void *buffer = alloc (size);
BB 3: 11: void *value = getcwd (

buffer, size);
BB 4:(false) 12: if (value != 0)
BB 6: 14: size *= 2;
BB 6: 15: release (buffer);
BB 7: 16: buffer = alloc (size);
BB 8: 10: while (1) {

Figure 12: Path coverage report for gnu_getcwd the
prime path P2 = [1 2 3 4 6 8] in Figure 9b. The
columns are the basic block IDs, the edge/transition
kind (decision), and the source code. Note that the
basic blocks start at 2 as GCC reserves 0 and 1 for
the entry- and exit blocks.

prime path, and the runtime bookkeeping only needs
a few fast bitwise operations.

Finding the prime paths of a graph is an actively
researched topic [11, 12], and improved algorithms
would relax the current limitations and increase path
count threshold and support more complex functions.
Notably, GCC performs worse on graphs with large
SCCs. Still, the practical limit is not computing
the prime paths; the major slowdown are the later
passes where GCC processes the extra instructions
emitted by the instrumentation. Improvements in
later compiler passes would greatly raise the prime
path threshold.

Ball and Larus [3] show applications of path profil-
ing, which can guide optimization similar to how GCC
already uses edge- and block frequencies in profile-
guided optimization. For both space and time effi-
ciency the coverage instrumentation uses bitsets, but
can be extended to also record path frequencies.

Our implementation uses a very simple heuristic
to determine when coverage is too expensive, which
is inaccurate as an upper bound, and computation-
ally intensive as it enumerates prime paths up to the
threshold. Good heuristics and estimation of graph
complexity could be designed to efficiently reject func-
tions. Fast approximations, even with reduced accu-
racy, would improve the responsiveness of the compiler

9



when faced with large complex programs with many
functions that exceed the threshold.

Prime path coverage is not yet a widely used metric
in the industry. While we have found prime path
coverage to be an excellent tool to evaluate the com-
plexity of code and as driver on where to spend effort
during unit testing, further experiments could mea-
sure its effectiveness at finding defects, cost/benefit
ratio, and relationship with testing the functional
requirements.
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