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Abstract

We describe the implementation of the masking Mod-
ified Condition/Decision Coverage (MC/DC) support
in GCC 14, a powerful structural coverage metric with
wide industry adoption for safety critical applications.
By analyzing the structure of Boolean expressions
with Binary Decision Diagrams we can observe the
key property of MC/DC, the power to independently
affect the outcome, and map to the edges of the Con-
trol Flow Graph. This mapping can be translated to
a few bitwise instructions and enables GCC to instru-
ment programs to efficiently observe and record when
conditions have been taken and have an independent
effect on the outcome of a decision. By analyzing
the BDD rather than the program syntax, GCC can
measure MC/DC for almost all of its languages with
a single language-agnostic implementation, including
support for C, C++, D, and Rust.

1 Introduction

In this paper we describe the algorithms designed
and techniques used in the masking MC/DC support
written by the author for the GNU Compiler Collec-
tion (GCC). Modified Condition/Decision Coverage
(MC/DQC) [7] is a code coverage metric that aims to
improve program quality by requiring that all basic
conditions are shown to have an independent effect
on the outcome. It has long been understood that
MC/DC is a useful criterion for ensuring high qual-
ity software, notably being mandated by standards

such as DO-178 and ISO26262 for software in safety
critical systems where malfunction would put lives
at risk. Development in this space has been slow for
a few decades; the topic of structural coverage and
MC/DC received considerable attention around the
turn of the century [8, 7, 4, 6], but at the time the
analysis was largely manual, a process which is slow
and error prone. The next decade saw development
of automated instrumentation for analysis [13, 14, 5]
and the rise of tooling like VectorCAST and LDRA
which relies on source code instrumentation. GCC
has supported statement and branch coverage since
the late 1990s, with GCC the 2.95 manual [12] de-
scribing the gcov tool and coverage. 2019 — 2024 saw
a dramatic shift in the tooling space, with multiple
compiler vendors supporting MC/DC natively; The
Green Hills compiler got native support for MC/DC
in 2019 [11], and Clang got support for up-to 6 con-
ditions MC/DC for C and C++ in 2023 [10], a re-
striction which was relaxed in 2024 [9]. Support for
MC/DC was introduced in GCC 14, released in 2024.
GCC has always implemented coverage as object code
coverage [2, 5] (as opposed to source code coverage),
and the MC/DC supports builds on the object cover-
age framework by analyzing the Control Flow Graph
(CFG). This is different from the abstract syntax tree
driven approaches like the Whalen et al., Green Hills,
and Clang implementations. There is also interest in
measuring MC/DC of Rust programs [16], which is
supported by the approach described in this paper
as the CFG analysis is unaware of the programming
language.
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MC/DC is satisfied if:

e every entry and exit point has been invoked at
least once

e every decision in the program has taken all pos-
sible outcomes at least once

e every basic condition has taken on all possible
outcomes at least once, and

¢ each basic condition has been shown to indepen-
dently affect the decision’s outcome

There are a few variations on the metric; the most
significant ones are unique cause MC/DC and mask-
ing MC/DC, both described in detail by Hayhurst
et al. [7]. Unspecified, it usually refers to unique
cause MC/DC, where only one condition can vary
between two test input vectors to demonstrate inde-
pendent decisive power. Masking MC/DC relaxes this
requirement and permits more than one condition to
change between test inputs if they cannot influence
the outcome. Chilenski [4] demonstrated they are
generally equally effective at finding defects, and that
masking MC/DC accepts the largest set of test inputs
that achieves coverage; for N conditions, unique cause
MC/DC requires at least N 41 test cases, while mask-
ing MC/DC requires [2v/N] test cases. In this paper,
unless otherwise specified, MC/DC means masking
MC/DC.

2 Binary Decision Diagrams

Boolean functions have a canonical representation as
a reduced ordered binary decision diagram (BDD) [3]
where a path from the root to a terminal vertex cor-
responds to an input vector (zi,...,z,), and the
vertices correspond to the evaluation of a basic con-
dition. Reduced, ordered binary decision diagrams is
what is usually meant by BDD, and all uses of BDD
in this paper means reduced ordered binary decision
diagram. Andersen [1] is a good introduction. A BDD
is ordered when all paths through the variables re-
spect the linear order x1 < 22 < ... < x, and reduced
when there are no redundant tests of variables, and
no two distinct vertices have the same variable name

and successors. Short circuiting logic has a natural
expression in BDDs as shortcut edges to deeper levels,
e.g. the edge (z1,1) in Figure 2a. The leaves of a
BDD, called the terminals or decisions, are denoted
with the literals 0 and 1. The internal vertices, called
the non-terminals, correspond to a basic condition in
the Boolean expression and have exactly 2 successors,
the then and else branches. For any BDD there is a
path from every z; to every xp where ¢ < k, and all
paths end in one of the two terminals.

Condition coverage is defined as every condition in
a Boolean function (decision) having taken all possible
outcomes at least once [7]. Since vertices in the BDD
correspond to the evaluation of the basic conditions,
and edges the outcomes of the basic conditions, we can
determine condition coverage by recording the paths
taken through the BDD during execution; coverage
is achieved when every edge has been taken at least
once. In the context of object code coverage, condition
coverage is sometimes called edge coverage.

The key property of MC/DC is the independence
criterion. For MC/DC, recording the vertices as they
are visited is not sufficient for determining coverage as
some vertices may be visited without independently
affecting the decision due to the masking effect. A
condition is masked if changing its value while keeping
the other inputs fixed does not change the decision.
This is intuitive for short circuiting - since a short
circuited condition is not even evaluated, it cannot
affect the decision. Short circuiting is determined by
the left operand and operator; (1V z) and (0 A z).
Boolean operators are commutative, (z1Vaze) < (x2V
x1), so the inability to affect on the decision must also
apply for (z V1) and (z A 0), i.e. the right operand
masks the left operand. This can be seen in the truth
table in Figure 1a; for (21 V x3) the decision can be
fully determined by the left operand z; = 1 (rows
3, 4) and the x2 does not affect the decision, and
likewise for (z1 A z2) where 1 = 0 (rows 1, 2). For
(1 V1) (rows 2, 4) and (1 A 0) (rows 1, 3), the left
operand has no effect on the decision. Figure 2 shows
the same function as a BDD. Simply put, conditions
are masked if they would be short circuited in the
reverse-order evaluation of the Boolean function; if
(24, ) short circuits xy, then (xg, z) masks x;.



1 X2 | VA 1 X2 | V o X1 | V
0 010 O 0 010 0 010
0 1 1 0 0 1 1 1 * 1
1 0 1 0 1 * 1 0 1 1
1 1 1 1 1 * 1 1 * 1

(a) (b) (c)

Figure 1: ais the truth table for the Boolean operators.
b and c are the truth tables for V in left-to-right and
right-to-left evaluation order with conditions short
circuited (*).

Figure 2: (x1Vx2) as a BDD. The regular edges make
up the path for the given input vector. b demonstrates
masking; changing x; does not change the decision

(1.

3 Finding the masking table

In this section we describe an algorithm for computing
the masking table from the structure of a Boolean
function by analyzing the corresponding BDD. BDDs
were used by Comar et al. [5] to show that when the
BDD is a tree then edge coverage implies MC/DC,
which GTD GmbH used to implement an MC/DC
tool [15] that checks and requires that all Boolean
expressions are tree-like BDDs. This algorithm only
relies on the BDD being reduced and ordered, and
works for arbitrary Boolean functions.

Short circuiting and masking can be understood
in the BDD as different paths to the same termi-
nal. Subexpressions preserve local short circuiting
and masking, seen as multiple paths to a pseudo-
terminal, a vertex that would be a terminal if the
expression was independent. Multiple paths to the
same pseudo-terminal means it will have multiple in-
coming edges (in-degree > 2); the short circuiting
edges and the one non-short circuiting edge. Consider
the Boolean function (x1 V (z2 A 23) V x4), and the
BDD in Figure 3a. (22 A 23) (Figure 3b) is embed-
ded in the BDD, and what would be the terminals
in (2 A z3) become the pseudo-terminals z4 and 1,
both with an in-degree > 2. The goal is to deter-
mine which terms are masked upon taking an edge,
which corresponds to a specific outcome of evaluating
a condition. The specific Boolean operator is gener-
ally of little significance for the analysis, in contrast
to the abstract syntax tree approach of Whalen et
al. [13], as the BDDs for the Boolean functions with
inverted operands are isomorphic. This is explained
by De Morgan’s laws, =(P V Q) < (=P) A (=Q) and
-“(PAQ) < (-P)V (—=Q), and in the BDD by invert-
ing all the comparisons and swapping the terminals.
Negation is built into the evaluation of a basic condi-
tion (contrast if (v != 0) to if (v == 0)). As a
consequence, we only need to be concerned with the
shape of the BDD.

Consider the Boolean expression B on a normalized
form (A1 VAV -~V A,) or (Af ANAs A -~ N Ay)
where Ay is either a basic condition or a possibly
nested complex Boolean function combined with a dif-
ferent operator. Let Br be the short circuit terminal
of B, 1if Vv, or 0 if A, which will have an in-degree



(b) (z2 A x3)

(a) (x1 V (w2 A z3) V T4)

Figure 3: A Boolean function (a) and its subexpres-
sion (b). The terminals 24 and 1 in (b) become pseudo-
terminals in (a). The masking effects in subexpres-
sions will be preserved in the superexpression.

> 2. We want to find the masking table, where the no-
tation (u,v) ~ { Tk, Tpt1,..., T, } means that taking
the edge (u,v) mask the conditions xg, Tx11,...,Zn.
Ag41 can only be entered through Ay, which follows
directly the ordering property. It follows that all
paths through Ay must go through Aj4q or to Br.
For example, let A} be the result of evaluating Ay
on its own. Precomputing would not change the
truth table of B, and since Aj, is a basic condition
it has exactly two successors, one being the short
circuiting edge to Br, and the other the evaluation
of the right operand Agyi. An example can be seen
in Figure 5 where the substitution z1xs = (z1 A 22)
is succeeded by 1 and z3, which corresponds to the
edges (x1,x3), (z2, 23), (z2,1). Finally, the last condi-
tion of A, must decide the outcome. By using these
observations we can identify the vertices of Ay from B;
given the edges (4;, Br) and (Ag, Br) where i < k,
(Ag, Br) masks A;. The problem now becomes find-
ing the subset of vertices where all paths go through
either (1) the edge (4;, Br), where the source vertex
is last term of A;, or (2) an edge to the term of A;4.
The boundaries of A; can be found with the function
P(z) = {(ze, Tn, Tm) | Tn, € preds(z), z,, € preds(z),
xe € suces(z) —{ xy, },n < m}; for each vertex = with
an in-degree > 2, consider the Cartesian product of
the predecessors preds(x)? where the pairs (z,, Z,)
are ordered so that n < m and duplicates are re-

Ty T2 T3
SR
132:1 -
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(b)

Figure 4: (x1 V 22 V x3) and the short circuited (*)
and masked (-) terms when a basic condition takes

-

[1] [o] 1] [o]

(a) (1 Ax2) V (z3 A T4) (b) z1z2 V (T3 A T4)

)

Figure 5: Two equivalent Boolean functions where a
subexpression is computed outside the function. All
edges from the subgraph (z2 A x2) go to z3 and 1,
which are the successors z1zs.

moved, and x, is the non-z successor of z,,. Note
that succs(Ag) = {z,z.}. Masked conditions can
found from the triple (z¢, Zn, Ty ): if all paths from a
vertex x; where ¢ <= n go through either x, or x it
is masked when the edge (z,, ) is taken.

We now have a an algorithm for computing the
masking table from the BDD:

1. For each vertex x with in-degree > 2, find the
triples { (ze, Tn, Zm), ... } = P(x).

2. For each triple, remove succs(z,,) = { z, z. } from
the BDD; these are the pseudo-terminals of Ay.

3. Remove and collect all vertices made into leaves
until no more vertices can be removed; the col-
lected vertices are Ay.



4. Add the collected vertices to the masking table;
]\4(337%7 .7,‘) + Ay.

An example run of the algorithm can be seen in
Figure 6. Ay may be an arbitrarily complex BDD,
but since all paths must go through either = or z. and
removing leaves is equivalent to inverting the edges
and collecting all paths from x and z. to the first
condition in Ay, e.g. with a breadth-first search. The
search will stop when it reaches the root of the BDD
or the vertex x, where there is a path from z, to the
other pseudo-terminal of A;. Note that algorithm
may collect multiple A; where ¢ < k that short circuit
to the same pseudo-terminal z. The simplest exam-
ple is (x1 V x2 V z3), as seen in Figure 4. For this
function, P(1) contains (Ze,Zn,Tm) = (x3,z2,T3),
which means 1 and x3 should be removed from the
graph. This makes zo a leaf, which when removed
makes x; a leaf and yields the masking table entry
(z3,1) ~ {x1,22 }. The correctness is not affected
as the masking table maps edges to sets with dupli-
cates removed, and the inefficiency can be addressed
with memoization. It is possible that there is an even
faster approach for this, either by limiting the search
by going through the other pseudo-terminal, or by
removing all x, at once, but these approaches were
not explored.

4 Instrumenting programs for
measuring MC/DC

If the control flow graph (CFG) is carefully con-
structed to directly model the evaluation of condi-
tional expressions as BDDs this algorithm can be run
directly on the CFG. This is a departure from the
approaches of Whalen et al. [13] and Sagnik [11] who
derive the masking table from the abstract syntax
tree (AST). By doing the analysis directly on the
CFG the analysis becomes language agnostic, or re-
quires minimal information from the front-end, and
can be used with several languages. For this work
the compilers for C, C++, D, and Rust (which is
experimental in GCC 14) were all shown capable to
instrument for MC/DC. Note that the Go front-end
does not construct a CFG isomorphic to the canon-

T X1
1 1
ZTo T
Y »
Ay

0
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Figure 6: ((z1 V x2) A (x5 V z4) A x5) for the edge
(24,0) and (e, Ty, Tm) = (x3,22,24). In the first
step (b) suces(zy,) = {z3,0} are removed (dotted).
Repeatedly removing leaves gives (c). (d) shows the
collected conditions; (x4,0) ~ {z1, 22 }.

(a)

ical BDD for Boolean expressions and consequently
cannot measure MC/DC. Other languages supported
by GCC (Ada, Fortran, Objective-C, Modula-2) were
not tested, but might work. The only modification
other than the CFG analysis was in a lowering pass,
where complex Boolean expressions were transformed
to If-then-else normal form (INF), which was extended
with an identifier that maps a basic condition to its
Boolean expression. INF is a Boolean expression
built entirely from the if-then-else operator and the
constants 0 and 1 such that all tests are performed
on variables. Any Boolean function is expressible in
INF [1] which can be represented in graph form as a
decision tree and in a refined form a BDD. The BDD
is a natural way for compilers to implement Boolean
expression evaluation as it encodes both evaluation
order and short circuiting with no redundant tests.
The approach is similar to measuring condition
coverage as described in Section 2 by recording the
paths through the BDD during execution. However,
in MC/DC an edge may be taken without having
an independent effect on the decision for that input
vector. The masking table is a function m : E — 2€
where C is the set of basic conditions. Then m :
e — C C C maps e to a possibly empty set of basic
conditions that do not have an effect on the decision.



Edge Masked conditions Bitmask
(.%27 1'3) T 10000
(1'47 .%‘5) I3 00100
(.1‘4, O) T1,T2 11000
(.135,0) T1,T2,T3,T4 11110
Figure 7: Masking table m for ((x; V a2) A (23 V

x4) Axs) (Figure 6). The third column is the bitmask
representation of the masked conditions.

When the program reaches a terminal through a path
E, the covered condition outcomes will be the edges
E —{x:m(FE)}, that is, with the contribution of the
masked conditions voided and the remaining condition
outcomes (edges) shown to have an independent effect.
Coverage is achieved when all edges have been marked
at least once. For example, given ((z1 V x2) A (23 V
x4)Axs) in Figure 6, the masking table m in Figure 7,
and the input vector (0 1 0 0 1). The edges taken
are (21,x2) (z2,23) (x3,24) (24,0). Applying m to
the edges gives the { 1, 2 } which means the covered
condition outcomes are x3 = 0, x4 = 0. For condition
coverage the covered outcomes would be 1 = 0, z2 =
1, 23 =0, 4 =0.

As seen in Section 3 the masking table m only
depends on the structure of the Boolean function,
and can be computed offline, i.e. during compilation.
There is a bijection between the position (index) of
the basic conditions in a Boolean function and the
natural numbers. By limiting the number of con-
ditions, paths can be represented and recorded us-
ing fixed-size bitsets and bitwise operations. For
example, the input vector (0 1 0 0 1) and path
(z1,22) (x2,23) (v3,24) (24,0) can be represented
as the two bitsets f = 10110,¢ = 01000 where bit
t[n] = 1 if the nth condition was true, f[n] = 1 for
false. Note that ¢[5] = f[5] = 0 because x5 was short
circuited. Edges are recorded and masked by with a
few bitwise instructions before performing the condi-
tional jump, as seen in Figure 8. Upon taking an edge
to a terminal both bitsets are flushed to global bit-
sets, what Whalen et al. [13] call independence arrays.
Coverage is achieved when all the bits are set in both
counters. Sagnik [11] uses a similar approach with a
single bitset, using odd/even indices for the true/false

if (x_n !'= 0)
then: goto _then_n
else: goto _else_n
if (x_n !'= 0)
then:
_t &= ~m[n, 1]
f &= ~m[n, 1]
_t |= (1 << n)
goto _then_n
else:
_t &= ~m[n, O]
_f &= ~m[n, O]
_f |= (1 << n)
goto _else_n

Figure 8: The evaluation of a basic condition in INF
with and without instrumentation. m[n, 0] looks up
the bitmask for the false outcome of the nth condition
in m. Operators use the semantics from C: &= is
bitwise-and, |= is bitwise-or, ~ inverts all bits, and
1 << nis a bitmask where only the nth bit is set.

outcomes. Limiting the number of conditions and
using fixed-size bitsets is a purely practical choice,
and the approach would work just as well with vari-
able sized bitsets. In GCC 14, the bitset is 32 or 64
depending on the target platform and configuration.
Boolean functions with more than 32 conditions are
very uncommon, 64 even more so, so this limitation
rarely becomes an issue.

5 Summary and future work

Interpreting the Control Flow Graph (CFG) directly
as a Binary Decision Diagram (BDD) is an effec-
tive way of inferring the masking- and independence
properties of Boolean expressions. The novel imple-
mentation of Modified Condition/Decision Coverage
(MC/DC) in the GNU Compiler Collection (GCC)
does not build on syntax, but rather analyzes the
BDD and builds a table that maps decisions to ef-
ficient operations on bitsets. These operations are



inserted into the instrumented program and records
when a condition is evaluated and shown to have an
independent effect on the outcome, per the masking
MC/DC criterion. The BDD analysis is language in-
dependent unlike the syntax based approach taken by
Green Hills [11], Clang [10], and Whalen et al. [13],
and the implementation can be shared between C,
C++, D, Rust, and any language where the com-
piler front-end generates a BDD-like CFG for Boolean
expressions.

The GCC implementation is limited by the size of
the bitset, typically 64 bits (one bit per basic con-
dition). This constraint could be relaxed, either by
tuning the algorithm or by targeting variable-sized
bitsets. The approach also relies on the compiler front-
end encoding Boolean expressions as BDDs, which the
Go front-end notably does not, and future work may
either detect whether the CFG is a BDD. Future work
may also extend GCC to support the other forms of
MC/DC, in particular unique cause MC/DC.
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